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ON IRREDUCIBILITY OF STANDARD 
MODULES FOR GENERIC REPRESENTATIONS 

BY WILLIAM CASSELMAN AND FREYDOON SHAHIDI (*) 

ABSTRACT. - In this paper the authors generalize a result of Vogan on irreducibility of standard modules for 
generic representations from real groups to p-adic ones whenever the inducing data is supercuspidal. They also 
prove injectivity for standard modules in this case. As applications, the authors prove a number of results relating 
the poles of intertwining operators and points of reducibility of induced representations to the poles of L-functions 
defined by the second author, module a conjecture on them whose validity for classical groups is also verified 
here. A result on certain real groups with applications in liftings of automorphic forms from classical groups to 
general linear groups via L-functions is also proved. 0 Elsevier, Paris 

RESUME. - Dans cet article les auteurs generalisent un resultat de Vogan sur I’irreductibilite des modules standards 
pour les representations gtneriques des groupes reels vers les groupes p-adiques quand I’induite est supercuspidale. 
11s prouvent Bgalement l’injectivite pour les modules standards dans ce cas. Les auteurs en deduisent quelques 
resultats reliant les poles des operateurs d’entrelacement et les points d’irreductibilite des representations induites, 
aux poles des fonctions L definies par le deuxibme auteur, modulo la validite d’une conjecture que l’on verifie 
ici pour les groupes classiques. On montre aussi un r&&at sur certains groupes reels avec applications aux 
correspondances des formes automorphes des groupes classiques vers les groupes lintaires via les fonctions L. 
0 Elsevier, Paris 

Introduction 

The purpose of this paper is to prove a number of results in representation theory and 
harmonic analysis of local groups, some of which have important consequences in the 
theory of automorphic forms. 

More precisely, let G be a quasisplit connected reductive group over a local field F 
of characteristic zero (real, complex, or p-adic) and let B = TU be a Bore1 subgroup 
of G, where T is a maximal torus of B and U is its unipotent radical. Let A0 be 
the maximal split torus of T. Fix a parabolic subgroup P of G defined over F with 
a Levi decomposition P = MN, with T c M and N c U. Let o be an irreducible 
tempered representation of M = M(F) and choose v E a& the complex dual of the 
real Lie algebra of the split component A of M. (See Section 1). Let I(v, (T) be the 
representation (unitarily) induced from v and (T. Assume v is in the positive Weyl chamber 
(Section 1). Then I( V, Q) is called a standard module. Let J( V, 0) be the (unique) Langlands 
quotient of I(v, O) (cf. [4, 17, 281). Up to conjugation of the data (v, (T), every irreducible 

(*) Partially supported by NSF Grant DMS-9622585. 
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562 W. CASSELMAN AND F. SHAHIDI 

admissible representation of G = G(F) is uniquely equivalent to a J(v, c). Moreover, 
every irreducible admissible generic (having a Whittaker model) representation of G is a 
J(.u, a) with r an irreducible generic tempered representation of M. 

When F = W, it was proved by Vogan in [37] that if J(v, g) is generic, then 
I(v, cr) = J(v, cr), i.e. I(v, a) is irreducible. The aim of this paper is to address this 
question and related ones for p-adic groups. In fact, in this paper we prove (Theorems 2.2 
and 3.4): 

THEOREM 1. - Suppose u is an irreducible unitary generic supercuspidal representation 
of M and jix v E a; in the positive Weyl chamber. 

a) Assume J(v, o) is generic. Then I(Y, o) = J(Y, o), i.e. I(v, o) is irreducible. 
b) Suppose J(v, o) is not generic. Then the unique irreducible subspace of I(Y, a) is 

generic. 
Equivalently, irreducible generic subquotients of I( V, o) are subrepresentations and are 

therefore unique. 
In the special case that P = B, i.e. is a minimal parabolic subgroup and u is an 

umamified quasicharacter of M = T, Part a) of Theorem 1 was proved in [2], [20], and 
[22], earlier, each using a different method. We refer to [3], [14], and [41] for G = GL,, 
but general tempered B. 

When G = Spzn. or S02n+l, part a) was recently proved in the generality of arbitrary 
standard modules by Goran MuiC in a very interesting manuscript [42]. As is the case with 
our results, his proof is based on the theory of L-functions developed in [23]. 

Although the result stated above is only for inducing supercuspidal data, the theorem is 
expected to be true in the generality of every standard module if part b) is formulated as: 

1) Irreducible generic constituents of standard modules are subrepresentations. (See 
the remark after Definition 3.1.) 

We have called this statement the generalized injectivity conjecture (Conjecture 3.3) and 
it is clear that it implies part a), i.e. 

2) Standard modules for generic representations are irreducible. 
Theorem 3.4 then proves this for inducing supercuspidal representations. 
To state some applications of injectivity (e.g. Theorem 5.1), one needs to discuss a 

conjecture (Conjecture 7.1 of [23]) whose validity also plays an important role in the 
proofs given here and [42]. 

To explain the conjecture, assume P is maximal. But u is any irreducible admissible 
generic representation of M. If r is the adjoint action of ‘M, the L-group of M on the 
Lie algebra Ln of the L-group of N, then r = @z”=, T;, with r-i’s ordered as in [23], 
i.e. according to the order of eigenvalues of ‘A in Ln. Finally, for each i, 1 5 i 5 m, 
let L(s, (T, Q) be the local L-function attached to o and ri as in [23]. When F = W, the 
L-functions are those of Artin (cf. [1,17,18,24]). (See Section 6 here and Theorem 3.5 
and Section 7 of [23].) Conjecture 1.1 then demands that each L(s, g, r-;) be holomorphic 
for Re(s) > 0 whenever g is tempered.The normalized intertwining operators then satisfy 
the last condition Rr set forth by Arthur in [l], whenever normalization is as in [19,23]. 
This conjecture has been verified in many cases in [23], including when m = 1 or g 
is supercuspidal, and the subject matter of Section 4 of the present paper is to prove it 
whenever G is of classical type. This includes all the quasisplit classical groups. 
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IRREDUCIBILITY OF STANDARD MODULES 563 

Next, let I(v, g) be a standard module attached to a tempered representation u of 
M, where P = MN is the corresponding standard parabolic subgroup. Denote by r& the 
longest element in the Weyl group of Aa in G modulo that of Aa in M. Fix a representative 
wa for Zoo in G. Let A(.u, (T, wa) be the standard intertwining operator from I(v, U) into 
qwo(~),wo(~>> (cf. s ec ion t 1). It is well defined since v is in the positive Weyl chamber. 
But its continuation to all of a; may have poles and that is where the problem lies. Assume 
P is maximal. Let (Y be the unique simple root in N. Set F = (p, a)-‘~, where p is half 
the sum of roots in N. Fix s E 43. We may take v = sCr E a& Then Re( s) > 0 since v 
is in the positive Weyl chamber. Consider the operator 

(3) fi L(is, 5, T;)-~A(&, CT, wo) 
i=l 

on I(&, 0). 
The homomorphy of (3) for all s E 43 has important global consequences through 

normalization of intertwining operators and Eisenstein series (cf. [ll], [15], [19], [21], 
[30], [31], [43]), and although at present we are unable to prove it in general, there are 
practical instances when this can be accomplished. In fact, our Theorem 5.1 proves the 
holomorphy of (3) on all of a3 under what we call inject&@ (Definition 3.1) for all the 
corresponding rank one standard modules. (See the remark after Definition 3.1.) 

One important instance when Theorem 5.1 can be applied is when F = R or C, and 
G = SOs,, the split even special orthogonal group of rank n (Theorem 6.1). The case 
in hand has an important application in the project of lifting automorphic forms from 
classical groups to general linear groups as being pursued in [ 11, 30, 311, using the 
converse theorem for L-functions [9]. 

To check that the hypothesis of Theorem 5.1 is satisfied, it is sufficient to prove that 
standard modules for GL,(W) satisfy injectivity, i.e. their irreducible subrepresentations, 
which turn out to be a single one, are all generic (large). A proof of this was communicated 
to us by Vogan. We would like to thank him for providing us with a proof and allowing 
us to include it here. 

Vogan’s proof is quite instructive. It relies on cohomological induction and is therefore 
algebraic. On the other hand, after communications with him, the authors realized that 
there is an analytic proof of Theorem 6.2 due to Jacquet and Shalika (Proposition 4.2 of 
[13]) which relies on the theory of canonical extensions of Harish-Chandra modules as 
developed by Casselman [6] and Wallach [40]. The existence of this second proof, which 
in spirit is closer to our approach in Section 3, was envisioned and communicated by the 
first author to several people, many years ago (cf. [7], for example). 

Our final application, Proposition 5.3 (and 5.4), determines the points of reducibility for 
every I(s&, cr) in terms of poles of L-functions, but under the assumption of validity of (2). 
When F = R, the assumption is already proved, and therefore proposition 5.3 shows that 

points of reducibility for I(&, a), Re(s) > 0, are precisely poles of { L(l - is, CT, ri), 
i=l 

where L-functions are those of Artin, attached to 0 and ri by Langlands [ 11, [ 171, [ 181, [24]. 
Proof of Conjecture 1.1 for the classical groups, given in Section 4 here, relies to certain 

extent, on what cuspidal inducing data for discrete series are. Except for Lemmas 4.1 
and 4.6 of [34], we have relied entirely on our own method to determine them and our 
results are quite parallel to those of TadiC [34], [35], [36]. The relation between our 
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two methods must certainly be explored further. (See Remarks 4.21, 4.22, and 4.23 here 
and [42].) Lemma 4.1 has also been verified independently by Y. Zhang in a work in 
progress, using results of Harish-Chandra and Silberger on special orbits (cf. [28]). 

Finally, since the L-functions are supposed to remain the same for members of each 
tempered L-packet (Conjecture 9.4 of [23]), one must explore the possibility of extending 
such results to non-generic representations. The project which has been started in [IO] 
and is aimed at developing similar results for non-generic representations may eventually 
provide us with some evidence in this direction. 

The second author would like to thank Joachim Schwermer for his hospitality during 
his visit to Eichstatt in the summer of 1993. In fact, his renewed interest on the problem 
was fired up by questions posed to him by Schwermer. 

We would like to thank David Collingwood, Birgit Speh, Marko TadiC, and David Vogan 
for several useful communications. We would also like to thank Jean-Loup Waldspurger for 
communicating to us TadiC’s original counterexamples to our original version of injectivity. 

1. Notation and Preliminaries 

Let F be a local field of characteristic zero. When F is nonarchimedean, we use q to 
denote the number of elements in its residue field. 

Throughout this paper, with the exception of Section 4, G denotes an arbitrary quasisplit 
connected reductive algebraic group over F. Fix a Bore1 subgroup B and write B = TU, 
where T is a maximal torus and U denotes the unipotent radical of B. 

Fix a parabolic subgroup P = MN of G defined over F with N c U and T c M, 
a Levi decomposition. Let Aa be the maximal F-split torus of T and denote by W(A,) 
the Weyl group of A0 in G. Let Wa be the longest element in W(Ao) modulo that of 
the Weyl group of A0 in M. Let $ be a generic character of U = U(F) (cf. [8,23]) and 
set $M = $]U n M. Suppose (T is an irreducible admissible $M-generic representation of 
M = M(F). Changing the splitting in U we may assume that $ and 67s are compatible 
(cf. [23]). 

Let X(M)F be the group of F-rational characters of M. Set 

a* = X(M)F @z BB 

and 
cl; = a* @‘R c. 

As usual (cf. [23]), we let 

I(V, c) = IndjwjvTGa @ q (~>HP( 1) g 1, 

where v E a; with exp replacing q if F = R. Here Hp is the extension of the 
homomorphism 

HM : M -+ a = Hom(X(M)F,W) 

to P, extended trivially along N, where HM is defined by 

for all X E X(M)F. 
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IRREDUCIBILITY OF STANDARD MODULES 565 

Suppose P = MN is maximal, M > T. Let T be the adjoint action of LM, the L-group 

of M, on the Lie algebra Ln of the L-group of N. Then T = 5 ri, with ri’s irreducible, 
i=l 

ordered as in [23], i.e. according to the order of eigenvalues of LA in Ln. Here LA is the 
L-group of A, the split component of M. It is contained in Aa. Finally, let L(s, 0, ri) 
be the local L-function attached to CJ and r; in [23]. (See Theorem 3.5 and Section 7 of 
[23].) Conjecture 7.1 of [23] plays a crucial role in the present paper and therefore for the 
convenience of the reader we state it here once more. 

Conjecture 1.1. Assume u is tempered and Re(s) > 0. Then each L(s, CJ, v-i) is 
holomorphic, 1 < i 5 m. 

Next, assume M is generated by a subset B of simple roots A of Aa in U. Fix 
W E W(Ac) such that iZ(t9) c A and let w E G be a representative for 6. Let 
N; = U n wNw-‘, where N is unipotent subgroup opposed to N. Given j in the 
space of I(v, a), let 

A(v, c> w)f(g) = J N- fWn9W (9 E (-3 

denote the standard intertwining operator from I(Y, 0) into I(w(v), w(a)). It converges 
absolutely in some cone and extends to a meromorphic function of v E at (cf. [12, 16, 
291). The knowledge of its poles on all of a: is very important and one of the aims of the 
paper is to determine them in terms of L-functions mentioned before in certain cases. 

When 0 is tempered the cone of convergence for v E a: equals to what one usually 
calls the positive Weyl chamber (a:)+ for a. Every v E (a;)+ satisfies Re(v, H,) > 0 
for every (Y E A - 6 and conversely, where H, is the standard coroot attached to cx and v 
is realized as an element of (aa);. Here a0 is the real Lie algebra of Ao. 

Suppose (T is tempered and v E (a;)+. Then I( V, c) has a unique quotient J(v, a), 
called the Langlands quotient of I(v, c) (cf. [4, 17, 281). Given an irreducible admissible 
representation rr of G, there exists a parabolic subgroup P = MN, N c U, M 1 T, 
an irreducible tempered representation (T of M, and a Y E (a;)+, such that 7r = J(v, 0). 
Moreover, by Rodier’s Theorem, x is generic only if a is. 

Since a part of this paper is heavily based on material in [5] and [8], we will adopt their 
notation in the following definitions for the convenience of the reader. 

Let A be the set of simple roots for M+ = Aa in U = N4. Fix a subset 6’ c A and let 
P = PO = MeNo = MN, No c N+, be the corresponding standard parabolic subgroup. 
Let $ be a nondegenerate character of N+, extending a nondegenerate character ?Ite = r/jMe 
of Me fl N+ Let w. be a representative for the element rZzzlo of the Weyl group of A0 
which sends every root in A - e to a negative one, while we(o) E A for all Q E 0. Let 

M’ = M&9) and denote by P’ = M’N’, N’ c N+, the standard parabolic subgroup of 
G having M’ as its Levi factor. Assume 4 and $0 are compatible (cf. [23]). This can 
always be achieved by changing the splitting in N,. 

Let (a, X(g)) be an irreducible admissible Go-generic representation of M = Me. Fix 
a Whittaker functional 0n-l for (T. Let p be the parabolic subgroup of G opposed to P. 
Then P = MN, N = N-0. One can then define standard Whittaker functionals R and a 
on I(a) = Ind(cT]P, G) and T(a) = Ind(g]F’, G), respectively by 

(1.1) (f, fl) = / ~-‘(~‘)(f(%-l~‘), fh+n’, 
N’ 
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566 W. CASSELMAN AND F. SHAHIDI 

f E I(g), as in [8, 251, and 

when 7 E F(U). Both integrals are defined as principal values (cf. [8]). 
Let 

be the intertwining operator 

(1.3) 

determined by the ‘Fl(cT)-valued 

T : T(a) - I(O) 

Tf(d = N %ddn s 
functional 

AN(T) = 
s 

f(n)& 

Then TT(e) = AN(f). Let 7 be the constant defined by Rodier’s theorem, i.e. 

(1.4) T*R = -@. 

Next let O’ = we(a) and let C$(O’) = C+(a’, w;’ ) be the local coefficient attached to 
u’, WO -l, and $J (cf. [25]). More precisely it is defined by 

(f’, a’> = C&+)(46 w,?)f’, Q), 

where A(a’, w;‘) : Ind(a’(P’, G) - Ind(o]P, G) is the standard intertwining operator 
and R’ is the standard Whittaker functional on I(cr’) = Ind(g’]P’, G). Finally, let 7 = y(g) 
be as in equation (1.4). We have: 

LEMMA 1.2. - y = C+(fl’,w;‘)-‘. 

Proof. - Let I(a) = Ind(a]P, G) and let 

T: I(n) - I(o) 

be the intertwining operator (2.3). If 

L w. : I(d) - T(a) 

is defined by L,,f’(g) = f’(wog), then 

(1.2.1) T . L,, = A@‘, w;‘). 

By definition 
-- 

(1.2.2) (7, T*Q2) = -0, Q), 

where f = L,, f’, f’ E I(o’). Then 

(1.2.3) &d’, Q = (f’, 0’) 
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IRREDUCIBILITY OF STANDARD MODULES 567 

with R’ as above. Using (1.2.1) and (1.2.3), (1.2.2) implies 

(A@‘, w;’ )f’, fi) = r(f’, w, 

from which the lemma is immediate. 
If g is a $-generic irreducible tempered representation of M and v E a& we use 

C+(v, 0) to simply denote the local coefficient [25] attached to v, (T, and wg, i.e. the 
complex function defined by 

where 
A@, 0, ‘wo) : +, g> + I(wo(4 wo(4) 

is the standard intertwining operator defined earlier. 

2. Irreducibility of standard modules 

Let T be an irreducible admissible generic representation of G. By Langlands 
classification ([4, 17, 281) there exists a standard parabolic subgroup P = MN of G 
with split component A, an irreducible generic tempered representation (T of M and a v in 
the positive Weyl chamber of a; such that T = J(v, CT), the (unique) Langlands quotient 
of I(v, r~). When F = R, in [37], Vogan proved: 

THEOREM 2.1 (Vogan). - Assume F = W and T = J(v, CT) is generic. Then J(v, a) = 
I(v, o). In particular I(v, u) is irreducible. 

Now suppose F is p-adic. In this section we extend Theorem 2.1 to p-adic fields when 
a is supercuspidal. More precisely, we prove: 

THEOREM 2.2. - Let u be an irreducible generic unitary supercuspidal representation of 
M. Assume J(v, o) is generic. Then I(Y, o) = J(v, a), i.e., I(v, o) is irreducible. 

Proof. - Assume (T is @o-generic and let 11, be an extension of $0 (cf. Section 1). 
Let C+(wO(v), wg(c)) be the corresponding local coefficient, i.e. the complex number 
defined by 

(2.2.1) (f’, 0’) = WwoW, woWMwoW> web), ~,~).f’, f$ 

where s2’ is the standard Whittaker functional on I(wo(v), W,,(Q)). By Proposition 7.3 
of [23], Conjecture 1.1 is true and therefore the denominator of C+,(wa(v), we(a)) is a 
product of the form 

I-J L(1+ sj, wo(app, 

where L-functions are as in [23] with Re(sj) > 0, since u is in the positive Weyl chamber 
(Theorem 3.5 of [23], equation (3.11)). Again by Proposition 7.3 of [23], this product is 
non-zero since these L-functions are holomorphic if Re(sj) > 0 (in fact if Re(sj) # -1, 
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c being supercuspidal). In conclusion C~(wo(v), we(a)) is well defined whenever Y is 
in the positive Weyl chamber. 

On the other hand, by Theorem 5.4.2.1 of [29], the operator A(wo(v), We, wil) is 
holomorphic as long as (T is unitary supercuspidal and v is regular, and in particular if v 
is in the positive Weyl chamber. It now follows that the normalized operator 

(2.2.2) Cdwo(4, WO(~)~WO(~, we(o), w;‘> 

is well defined on all of I( wu(v), wc(tr)) if J(Y, g) is standard. 
Choose f’ in the space of I( we(y), we(a)) such that (f’, a’) # 0. Then by 

equation (2.2.1), the image of f’ under (2.2.2) is $-generic. 
Suppose J(v, g) is $-generic, but I(Y, g) is reducible. The image of I(wa(v), wg(g)) 

under (2.2.2) being +-generic, will have an irreducible q-generic subquotient which is 
inequivalent to J(v, a) by uniqueness of Langlands quotient. This contradicts Rodier’s 
Theorem and proves the Theorem. 

Remark 2.3. - The standard modules which are built by means of minimal parabolic 
subgroups are clearly among special cases covered by Theorem 2.2, since quasicharacters 
of A,, the F-points of the split component of M, are supercuspidal. When 0 is an 
unramified character of A+, the theorem was proved in [2], [20], and [22], earlier, each 
using a very different method. 

COROLLARY 2.4. - Let y be as in equation (1.4) and assume 1(a) = Ind(g/P, G) is 
standard. Then y # 0. 

Proof. - This follows from Lemma 1.2 and the fact that C+(a’) = C, (we(a)) is well 
defined which was observed in the proof of Theorem 2.2, if g is in the positive Weyl 
chamber. 

3. Generalized injectivity 

In this section we will address a property of standard modules which implies Vogan’s 
theorem for them and is therefore rather stronger. It simply requires the generic constituents 
of a standard module to become subrepresentations. 

DEFINITION 3.1. - A standard module is said to satisfy injectivity if all its irreducible 
subrepresentations are generic. 

Remark. - When the inducing data is supercuspidal, we will show (Theorem 3.4) that 
the corresponding standard module satisfies injectivity. We initially believed that every 
standard module for a p-adic group satisfies injectivity. In fact, as opposed to the case of 
real groups for which already the rank one quasisplit group U(2,l) has standard modules 
which do not satisfy injectivity [4], standard modules defined by supercuspidal data for 
any p-adic quasisplit group do. But certain recent examples of TadiC for GSpan, 12 2 4, 
has convinced us to contrary in general. In fact, TadiC has a class of counterexamples for 
classical groups which are now included in his new version of [34]. What follows are 
some low rank examples which were communicated to us by him. 

The lowest rank examples of TadiC are for GSps(F) and SO7 (F). In both groups 
T = A0 acts transitively on the set of generic characters of U. Let go denote the Steinberg 
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representation of GL, (8’) , n = 3 or 4, a non-supercuspidal discrete series representation. If 
G = GSps(F),leta = gc@]det( )]i@l,arepresentationofGL4(F)xGL1(F),theSiegel 
Levi subgroup of GSps(F). On the other hand for G = SOT(F), let u = go @ ] det ( ) ] t 
denote one for G&(F), the Siegel Levi subgroup of SOT(F). In either case, using Jacquet 
modules, TadiC shows that the standard module I(a) has two (non-isomorphic) irreducible 
subrepresentations. By the above remark one of them must be degenerate. 

We therefore need the following definition. 

DEFINITION 3.2. - A standard module is said to satisfy generalized injectivity if all its 
generic constituents appear as subrepresentations. 

CONJECTURE 3.3. - Every standard module satis$es generalized injectivity. 

Remark. - The conjecture seems to be valid for real groups although no proof for it has 
been published (private communications with Vogan). In this section we will prove the 
conjecture when F is p-adic and the inducing data is supercuspidal. 

THEOREM 3.4. - Let F be a p-adic field of characteristic zero and let G be a quasisplit 
group over F. Let I( v, a) be a standard module for G. Assume a is generic and 
supercuspidal. Then the unique irreducible subrepresentation of I(u, cr) is generic, i.e., 
injectivity is valid for supercuspidal inducing data. In other words I(Y, o) injects into 
IndUtG$ for every II, extending $0, the character with respect to which o is generic. 

We use notation as in Section 1. More precisely, let 

Then we set l(gv) = I(cr, .Y) and use I and V to denote l(gv) and the space 
V(a,) = V(Y,U) of I(Y, 0). 

Since (T,, is supercuspidal and regular, Proposition 6.4.1 of [5] implies that u,S1i2 
appears in V, = V,, , the Jacquet module of V with respect to N, with multiplicity one. 
Consequently by Frobenius reciprocity V has a unique irreducible subspace. Theorem 3.4 
then requires this subrepresentation to be generic and in particular it will be generic with 
respect to every extension 4 of $0. We start with two lemmas. Again the notation is 
as in Section 1. 

LEMMA 3.5. - Suppose f E Ind(a]F, G) h as support in FN. Then there exists 
E = ~(7) > 0 such that 

for every a E A@ with lo(a)1 < E, CY E A - 0. Here A@ is the split component of 
Me, 7 = I(a,,), and Sp is the modulus character of P. 

Proof. - Assume 7 is supported in Fu. Then 

= s N ?J-‘(n)s-1’2(a)a,(a)(f(a-1na), R&f)dn 
= N $-l(ana 

.I’ 
-‘)~““(u)o,(a)(~(n), RM)dn. 
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Now choose E small enough so that $]awa-i E 1, concluding the lemma. 
Let V be the space of I(a,,) and denote by V ,vB its Jacquet module with respect to 

N = NO, where 0 is the subset of A generating M = Me. The space of Whittaker 
functionals on V,, is the dual of (VNO)tie,Men~+ (notation as in [8]). 

With notation as in [5] and [8], consider the diagram 

4e 
s,MenN, + 

in which $0 is defined by means of canonical liftings (cf. Section 4 of [5]), exactly as in 
the minimal case in [8]. It can be easily shown that ker (p) c ker (p,+~ . &), leading to the 
well defined map & of Proposition 6.4 of [8]. Consequently fl . 40 defines a functional 
On cvNo he,MenN~ and is therefore a Whittaker functional for VNO. Here Q = X,(V, g) 
is the canonical Whittaker functional for I(v, g) defined in Section 1. We now restate 
Proposition 6.4 of [8] in our case as follows. 

LEMMA 3.6. - Given f in the space V of I(v, u), there exists E > 0 such that 

(I(df> fin) = od’B(lN, b>.f> 

for all a E A@ with [~y(a)J < E, Va E A - 8. Here f” is the image off in V,,. 

Proof of Theorem 3.4. - By Proposition 6.4.1 of [5] 

(3.4.1) 1, = I,, = @ (t&)61’2, 
weW(A) 

where the sum is over the Weyl group of A in G. Since (T, is regular, each irreducible 
subrepresentation appears with multiplicity one in (3.4.1). Given f E l(cV), write 

where & is in (wo,,)S ‘I2 Here ? is the image of f in IN. By Frobenius reciprocity . 

INo( = ov(m)61’2(m>f(e) (m E Me). 

For each w, let A, be a Whittaker functional for ( WO,)@/~. We will take xi = fl;tM. Write 

fl.46 = &L, 
w 
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using the fact that R . $0 is a Whittaker functional for VN,. By Lemma 3.6 there exists 
E = c(f) > 0 such that 

(3.4.2) V(U).f> fv = fl . bav,(a>fi = c cw(Wu)(u)61’2(u)(fw, A,) 
w 

for all a E A@ = A with la(a)] < E, Va E A - 8. 
Next, choose f E r(o”) with support in FN such that TT(e) # 0. Such functions exist 

by Lemma 4.2 of [27]. By Lemma 3.5 and equation (1.4), there exists E = c(f) > 0 
such that 

(3.4.3) U(a)(Tf), a) = ruJ”“(a)((T7)(e), 0~4) 

for a E A@ with la(a)] < E, VQ E A - 0. 
Since CJ” is regular, Theorem 5.4.2.1 of [29] implies that T . L,, is well defined on 

all of I(w~(v), wa(g)) where 

is defined by (1.3) and 

is as in Lemma 1.2. Consequently f = TT is well defined and belongs to l(cV). Comparing 
(3.4.3) with (3.4.2) and using the regularity of uvr one has cl = y which is non-zero by 
Corollary 2.4. We can therefore write 

(3.4.4) V(U)f,W = r~v~"2(~)(f(e),~~)+ Cc, . (~~~)(u)~'~~(~)(fu,,A~). 
Wfl 

Since v is in the positive Weyl chamber, the term 

is now a leading term as lo(u) ) * 0, a E A@, V’a E A - 8, if (f(e),0,) # 0. 
Suppose 0 # f E V is such that (1(g)f, Q) = 0 for all g E G. Then IV, = 0, 

where w&d = VW,% i.e., 0 # f lies in the kernel of f w IV, into Indut& 
or injectivity fails. 

We may assume (f(e), a,) # 0. Then for a E AO with la(u)] < E = I, Vo E A - 8, 

0 = (I(a)f, R) = ruJ”2(u)(f(e), RM) + . . . 

with r~v@/2(~>(f(e>, fin), a non-zero leading term as lo(u)] H 0, V’a E A - 8. This 
is a contradiction. 
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4. Proof of Conjecture 1.1 for Groups of Classical Type 

Throughout this paper, a classical group is a connected algebraic group, fixing a non- 
degenerate bilinear form of either symmetric, alternating, or Hermitian type. The group G 
will be called of classical type if there exists a product of classical groups whose derived 
group is a covering, as an algebraic group, of the derived group of G. We will further 
assume that G is quasisplit. The purpose of this section is to prove Conjecture 1.1 when 
G is of classical type. 

Let G be a quasi-split classical group over a p-adic field F of characteristic zero. Let 
a: be a discrete series representation of G = G(F). Choose a Levi subgroup 

M = GL,, x . . . x GL,, x Go 

of G, with Go classical. When G is the unitary group defined by a quadratic extension 
E/F, GL,% must be replaced by ResEiFGL,-. The reader must be warned that a; is a 
pure symbol and is neither the dual nor the contragredient of a representation (72. Choose 
an irreducible supercuspidal representation (TV = p1 @ . . . @ pn @ 7 of iU = M(F) such that 

Next, let ‘T~ be an irreducible unitary supercuspidal representation of GL,(F). Assume 
T is generic. Let 01” be a discrete series representation of GL,(F) with t/u, defined by 
means of co as in [3, 411. (See below.) 

We are interested in the Rankin-Selberg product factors for gy x g.!/. More precisely 
we want to study 

as defined by the y-function y(s, ~1” x a,V, $I~) of Theorem 3.5 of [23]. (See Section 7.) 
Here y(s, 01” x c$‘, $1~) is y(s, gy @ al, r-r, QF) of cases B,, C,, D, - 1, 2A, - 4, and 
2D - 1, chosen according to G. For the sake of simplicity, from now on, we drop the 
deiendence on $JF from r(s, a: x a,V, 4~). As in Corollary 5.6 of [26] we have: 

(4.1) Y(% 00 x fJ,V) = Y(S) co x 7) fi Y(S, 00 x PjM, co x I%) 
j=l 

for the pair (HO,. 
For each j, 1 5 j 5 n, choose an irreducible unitary supercuspidal representation pc,j 

and a real number vi such that pj = po,j 18 ] det( ) IV3 : 
Let p = p1 @ . . . @ pn and set 

(4.2) rl(s, go, 7, P) = L(s, 00 x T> fJ qs + vj, 00 x Po,j)L(S - vj* 00 x PO,& 
j=l 

The reader must realize that when we are in the unitary case A, - 4 of [23], &,j must 
be replaced by & throughout, where & denotes the Galois conjugate of po,j under the 
non-trivial element of the Galois group of the defining quadratic extension. 
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If A(s) and B( ) s are two rational functions in Q-~, we use A(s) N B(s) if they are 
equal up to a monomial in 4-“. Then from (4.1) and (4.2) we have 

(4.3) Y(S, 00 x 4) - 77(s - 1, go, T, PM% 00, T, PI. 

Now suppose gy is the unique discrete series constituent of 

Ind~$&.~(~i @ . . . @ CQ) @ 1, 

where lIGL,(F) has b factors with b = u/t and cri = u. @ 1 det( ) J@+1)/2-i, 1 2 i 2 b. 
(See [3, 411.) 

Then 

y(s, u1/ x u;) = Ip$s + (b + 1)/2 - i, aa x cr,“) 
i=l 

i=l 

N fiq(s + (b + q/2 - i - 1, no, 7, p)/q(s + (b + I>/2 - i, go, T, P). 
i=l 

Define L(s,ay x ag)-l as the numerator of y(s,ay x ~2”) as in [23]. We shall prove: 

THEOREM 4.1. - The L-function L(s, 0: x crz) is holomorphic for Re(s) > 0, 
i.e. Conjecture 1.1 is valid. 

The following corollary is then a consequence of part 2 of Theorem 3.5 of [23] and 
Theorem 4.1 here since the local coefficients for groups of classical type are just a product 
of those for classical groups. Observe that it states a result on the holomorphy of local 
coefficients which is usually deep. 

COROLLARY 4.2. - Let G be of classical type. Then the corresponding local coefJicient 
for any parabolic subgroup and any generic tempered representation of its Levi factor is 
holomorphic for v E WO(( a:)+). 

By Lemma 4.1 of [34], representations pa,j are all self-contragredient. In fact, although 
in [34] this is only proved for symplectic and odd special orthogonal groups, we have 
been assured by TadiC that similar results can be proved for other classical groups. Similar 
remark applies to Lemma 4.6 of [34]. (See Remark 4.21 below.) Lemma 4.1 has also been 
verified independently in a work in progress by Y. Zhang, using results of Harish-Chandra 
and Silberger on special orbits (cf. [28]). 

The L-functions in the product 

rI( L s + vj, 00 x PO,j)L(S - vj, 00 x PO,j) 
j=l 

are non-trivial only if 00 @ 1 det( )]‘Q E po,j for some so,j E iR. We therefore may 
assume, by shifting s by SO,~ E iR, that ~0 is self-dual and po,j F?’ go. We shall therefore 
need to study products of type 

L(s, a0 x T) fi L(s + vj, 00 x ao)L(s - vj, go x Go), 
j=l 
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where go E’ 60 and vj E R. Observe that we may need to study these products with 
different values of s. But Re(s) will be the same for all such products. 

Given t E C, set 

L(t) = L(t,uo x CQ) 

whose dependence on CJO is understood. 

DEFINITION 4.3. - By a chain based on 00 or a oo-chain (simply a chain if ~0 is fixed), 
we mean a sequence of representations 

uj = u. @ Idet( )]“-I (~j E R) 

for which vj - ZY-~ = 1 for all possible j. If co is understood to be fixed, we use {~j}y=i 
to denote a chain based on cro. This is what is called a segment in [34] and [41]. 

Using results from [23], we shall first prove that one only needs a union of certain 
special types of chains to obtain all the induced representations which have discrete series 
subrepresentation. Our main tool is the following theorem whose proof is an application 
of Proposition 7.2.b of [23]. One observes that by Proposition 7.3 of [23] the assumption 
on L(s,a,rs) = L( s, go, ~2) is in fact satisfied. 

THEOREM 4.4. - Dejine L(s, o. x (T:) as the inverse of the numerator of y(s, ~0 x a:), 
where uz is in the discrete series and oo is irreducible unitary supercuspidal. Then 
L(s, 00 x 02”) is holomorphic for Re(s) > 0. 

We start with the following lemma. 

LEMMA 4.5. - Fix complex numbers p and v and let op = (TO @ ) det( )I” and 
oU = a0 8 1 det( )I”. Then L(s, cl0 x gII)-’ and L(s, 00 x crV)-l have afactor in common 
as polynomials in q-’ if and only if oL1 S ov. In this case L(s, CO x a,) = L(s, ~0 x o,). 

Proof. - The L-function L(s, o. x ao) = n(l - v(a)q-‘)-‘, where the product is over 

the group of all the unramified characters Which fix go. Then 

qs, 00 x a,) = L(s + pu, fJ0 x 00) 
= rI( 1 - wo(4csr1, 

v 

where ~0 = ) ]j‘, while 

where $, = I IV. If they have any factors in common, then no/nl, will have to belong to 
the group of unramified stabilizers of (T and conversely. 

Let {v~}?=~ be a chain based on a self-dual irreducible supercuspidal representation 
u. of GLt(F). Let 0s ” be a discrete series representation of G. Assume there exists a 
Levi subgroup M of G which is a direct product of an n-product of GL, with a Levi 
subgroup M’ of a smaller rank similar classical group and an irreducible supercuspidal 
representation gk of M’ = M’(F) such that ~2” can be embedded as a subrepresentation of 
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the representation of G induced from (l’-‘&, go @ ] det( ) IVj) @ ah of n GL,(F) X IV!‘. 
We then say oz is partially supported by the chain {~j}y=~. 

DEFINITION 4.6. - Let {.~j}~=~ be a go-chain. We shall call 

TX L(s - uj - l)L(s + vj - 1) 
Y(v4,...,hJ = n 

j=l 
L(s - Uj)L(S + Uj) 

L(s - V, - l)L(s + V1 - 1) = 
L(s - Vl)L(S + t&J 

the y-function of the chain {~j}j”=i. 

DEFINITION 4.7. - Two uo-chains are called y-equivalent, if they have equal y-functions. 

LEMMA 4.8. - Every non-positive chain is y-equivalent to a non-negative one. 

Proof. - Use y(s; vl,. . . , v~) = y(s; --v,, . . . , -VI). 

LEMMA 4.9. - If there exists only one chain {t~j}~=~ with v1 2 0 giving the uo-support 
of a:, then either ~1 = 0, ~1 = l/2, or ~1 = 1. 

Proof. - If v1 > 0, then by Theorem 4.4, L(s - vl) must not appear in $3, go x a;). 
By Lemma 4.5 we may assume that, either L(s - ~1)~~ cancels L(s + v1 - 1)-l, or 
it divides L(s - 1,~s x r)- ‘. In the first case, again by Lemma 4.5, we may assume 
v1 - 1 = -vl, since their difference fixes co. The other case could only possibly happen 
if v1 = 1. One needs only to observe that L(s, oo x 7) has no poles for s E (- 1, 0), a 
consequence of Proposition 7.3 of [23]. 

DEFINITION 4.10. - Fix co. Let {v~}Y=~ be a non-negative chain in the cro-support of gz. 
We shall say {vj}yE1 is regular if either ~1 = l/2 or vi = 0, or vi = 1 and L(s)-’ divides 
L(s, go x r)-’ (Lemma 4.9). Observe that by [23] this last condition (on L-functions) 
implies that the representation induced from (aa @ ] det( )I) @ 7, i.e. vcro >a r in the 
notation of [34], is reducible. (See Theorem 3.3 of [34].) 

DEFINITION 4.11. - Fix go. Let {~j}y=i and {v~}F=~ be a pair of non-negative chains 
in the as-support of c:, . ” Assume neither v1 = l/2 nor V; = l/2. We then call {~j} and 
{v:} a pair of singular chains, or a singular pair, if ~1 + V: = 1. 

Remark. - In view of Lemma 4.6 of [34] and Theorem 8.1 of [23], either v1 = 0 and 
VI = 1, or ~1 = 1 and V; = 0. 

LEMMA 4.12. - If {~j}j”=~ and { v~}& are members of a singular pair, then 

which we shall call the y-function for the singular pair, is non-zero for Re(s) > 0. 

LEMMA 4.13. - Every chain which is neither non-negative nor non-positive is y-equivalent 
to either a singular pair or a pair of regular chains starting at l/2, with y-function given 
as the product of their y-functions. 
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Proof. - Let {~j}j”=i be such a chain. Then 

u, > u,-1 > . . . > Ue 2 0 > Ue-1 > . . . > Ul. 

The pair 

{ Ue,..., GA> lJ {-%l,. . . , -v1} 

is a pair of non-negative chains. The initial points for these are ue and -ve-r, and 
ue - ue-1 = 1 implies that the pair is singular, unless ue = -ue-r = l/2. Moreover 

y(s; Ul,. . . , un) = y(S; Ue, . . . , Un)y(S; -ye-i, . . . , -Ul>. 

Then {uj}~=r is y-equivalent to the pair {ve,. . . ,un} U {-z/e-l,. . . , -VI}. 

DEFINITION 4.14. - Let {uj}& and {v;}& be a pair of go-chains in the co-support of 
0;. We shall say {zI~}~=~ can be completed to {u~}~!~, if m > n and u, = uk. 

PROPOSITION 4.15. - Every non-negative chain can be completed to either a regular chain, 
a member of a singular pair, or a chain whose initial point is negative. 

Proof. - Let {uj}y=r be a non-negative chain. Write 

y(s; Ul, . . . ) un) = 
L(s - u, - 1)Jqs + Ul - 1) 

qs - Ul)L(S + u,) . 

Assume {uj} is not of the types mentioned in the proposition and in particular if vi = 1, 
then L(s - l)-’ does not divide L(s - l,ga x 7)-l. By Theorem 4.4, L(s - ur) must be 
cancelled by the y-function of another chain {u~}~!r. Write 

y(s; u;, . . . ) u;> = 
L(s - u:, - l)L(s + u; - 1) 

L(s - u$qs + u&) . 

By Lemma 4.5, we may assume that either ur = u& + 1 or ui + ui = 1. Suppose 
u1 = & + 1. We can then complete {uj}~=r to the chain {uj}~=r U {u~}$!!~. Observe that 

is equal to the y-function of {~j}y=r U {u~}~=~. We can therefore replace the two 
chains with their union and continue with the argument if ui > 0. If ur + ui = 1 and 
u: 2 0, we then have a singular pair since we may assume u1 # ui. Otherwise, we can 
consider {-u~}~=, and then complete {v~}T=~ to the chain {uj}~=r U {-u~}:=~, since 
u1 = 1 + (-ui). By Lemma 4.8, y(s;ui,. . . ,z&) = y(s; -uL,. . . , -ui) and therefore 
again y( s; ur , . . . , u,)y( 9; ui, . . . , uk) is equal to the y-function of the union. We now 
use the induction if -u& > 0. 

PROPOSITION 4.16. - Fix oo. Then every ao-chain is y-equivalent to a chain which can 
be completed to a chain which is y-equivalent to either a regular chain, a pair of regular 
chains, or a singular pair of chains. 

Proof. - By Lemma 4.13, every chain with both positive and negative terms is y- 
equivalent to either a singular pair or a pair of regular chains starting at l/2. Moreover, 
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by Lemma 4.8, every non-positive chain can be replaced by a non-negative one. We now 
apply Proposition 4.15, and Lemma 4.13, if there are any mixed chains. 

We are now ready to prove Theorem 4.1. 

LEMMA 4.17. - The product 

f-J qs + (b + 1)/2 - i - 1, 00 x r)/L(s + (b + 1)/2 - i, go X 7) 
i=l 

is non-zero for Re(s) > 0. 

Proof. - Clear. 
We now consider contributions from go-chains. 

LEMMA 4.18. - Let {~j}~=~ be a regular chain with VI = 0 or l/2. Then 

h 

&(s + (b + 1)/2 - i; Vl, . * * ,G) 

i=l 

is non-zero for Re(s) > 0. 

Proof. - The product 

b n 

rIrI 

qs + (b + 1)/2 - i - l/j - l)L(s + (b + 1)/2 - i + Vj - 1) 

i=l j=l L(s + (b + 1)/2 - i - Vj)L(S + (b + 1)/2 - i + Vj) 

can be written with a numerator (a polynomial in q-“) as 

fi L(s + (b + 1)/2 - 1 - VJIL(S + (b + 1)/2 - 1 + q-1 
j=l 

= fi qs + (b + 1)/2 - j - y)-%(s + (b + 1)/2 - 2 + j + VJ1. 
j=l 

We shall show that every factor which has a zero at s with Re(s) > 0, cancels with a 
factor from the denominator. 

Since j 2 1, b 2 1, and ~1 2 0, (b + 1)/2 - 2 + j + ~1 2 0 which allows us to 
disregard factors 

fi L(s + (b + 1)/2 - 2 + j + VI)-‘. 
j=l 

We must therefore consider those factors for which 

(b + 1)/2 - j - .vl < 0 

or 
n>j>(b+1)/2-VI. 
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Let bc be the first integer strictly greater than (b + 1)/2 - ~1. We may assume ba 5 n. 
The product is then over b0 5 j 5 n, i.e. we need to consider: 

L(s + (b + 1)/a - b. - vl)-l . . . L(s + (b + 1)/2 - n - ~1)~l. 

The denominator is the product 

fJ ,qs + (b + 1)/a - b - j - vJ%(s + (b + I)/2 - b + j - 2 + ~‘1)~“. 
j=l 

For v1 = 0, 

b. = 
y b = odd 
y b = even, 

while for v1 = l/2 

b. = 
.{ 

y b = odd 
y b = even, 

It is easiest to consider four cases: 

Case 1. - z+ = 0 and b is odd. Then b. = y and the numerator of concern is 

L(s - 1)-l.. . L(s - (n - (b + 1)/2))-l. 

The denominator gives 

fi L(s - b/2 + l/2 - j)-‘L(s - b/2 - 3/2 + j)-‘. 
j=l 

Given an integer e, 1 5 ! 5 n - y, either e 5 y, in which case j = y - e will 
satisfy 1 5 j < n, using bo 5 n, and L(s-e)-l will be cancelled by L(s-b/2-3/2+j)-l; 

or 2 _ - ~<e<n-~,inwhichcasetheintegerj=e-~satisfieslIjIn-b<n 
and L(s - e)-’ cancels off L(s - b/2 + l/2 - j)-‘, proving the lemma in the first case. 

Case 2. - v1 = 0 and b is even. Then bo = y and the numerator is 

L(s - 1/2)-l.. . L(s + (b + 1)/2 - n)-‘. 

The denominator is 

fi L(s - b/2 + l/2 - j)-%(s - b/2 - 3/2 + j)-l. 
j=l 

Given l/2 < e 5 n - y, half of an odd integer, either -! 5 (b + 1)/2, in which case 
the integer j = (b + 3)/2 - f? will satisfy 1 5 j 5 (b + 1)/2 < n, using b. 5 n, and 
L(s - e)-’ will be cancelled by L(s - b/2 - 3/2 + j)-‘; or s < e < n - y, in 
which case the integer j = e - (b - 1)/2 satisfies 1 5 j 5 n - i <n aid L(s - e)-’ 
cancels L(s - b/2 + l/2 - j)-l. 
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Case 3. - ~1 = l/2 and b is odd. Then ba = y and the numerator is 

L(s - 1/2)-l.. . L(s + b/2 - n)-1, 

while the denominator equals 

fi L(s - b/2 - j)-‘L(s - b/2 - 1 + j)-l. 
j=l 

As in Case 2, given l/2 5 e 5 n - (b/2), half of an odd integer, either e 5 b/2 for 
which the integer j = y - e satisfies 1 5 j 5 (b + 1)/2 5 n and L(s - e)-l cancels 
L(s - b/2 - 1+ g-1, or b/2 < C 5 n - (b/2), in which case the integer j = e - (b/2) 
satisfies 1 5 j 5 n - b < n and L(s - 4)-l cancels L(s - (b/2) - j)-‘. 

Case 4. - ~1 = l/2 and b is even. Then ba = (b + 2)/2 and the numerator is 

L(s - 1)-l.. . L(s + b/2 - n)-l. 

Given 1 5 C 5 n-(b/2), an integer, either e < b/2 for which the integer j = (b+2)/2 4 
will satisfy 1 5 j 5 b/2 < n and L(s - !)-l will be cancelled by L(s - b/2 - 1 + j)-‘, or 
b/2 < f? < n - (b/2), in which case the integer j = e - (b/2) satisfies 1 < j 5 n - b < n 
and L(s - a)-’ is cancelled by L(s - (b/2) - j)-‘. 

The lemma is now complete. 

LEMMA 4.19. - Let {~j}j”=~ and {zI~}~=~ be a singular pair. Then 

is non-zero for Re(s) > 

1)/2 - i; Vi,. . . , v,)y(s + (b + 1)/2 - i; v;, . . . , z&) 

0. 

Proof. - It is enough to prove the same statement for 

fI L(s + (b + 1)/2 - i - V, - l)/L(s + (b + 1)/2 - i + viz>, 
i=l 

as well as for 

fr L(s + (b + 1)/2 - i - VL - l)/L(s + (b + 1)/2 - i + v;). 
i=l 

Suppose r& > (b - 2)/2. Then 

(b + 1)/2 - i + v, > b - (l/2) - i 2 -l/2. 

By Theorem 8.1 of [23] and Lemma 4.6 of [34], V, is a half integer, since r is generic. 
Consequently 

(b + 1)/2 - i + V, 1 0, 

proving the lemma in this case. 

ANNALES SCIENTIFIQUES DE L&COLE NORMALE SUPhIEURE 



580 W. CASSELMAN AND F. SHAHIDI 

Now suppose 0 5 V, 5 (b - 2)/2. Given an integer j, b 2 j > (b + 1)/2 + v,, choose 
an integer i, 2.~~ being an integer, such that i = j - 2v, - 1. Then 

b 2 i = j - 224 - 1 > (b + 1)/2 - V, - 1 

> (b + 1)/2 - (b - 2)/2 - 1 
= l/2. 

This implies that i 2 1 since it is an integer. Consequently the factor L(s + (b + 1)/2 - 
j + vn)-’ is cancelled off by L(s + (b + 1)/2 - i - V, - 1)-l. The lemma is now proved. 

LEMMA 4.20. - Let fi{vi}& be th e union of all the regular oo-chains with .vf = 1, 
e=i 

1 2 Q 5 c, which appear in the support of ~2”. Then the product of 

fr fi $S + (b + I)/2 - 4 @};:I) 
id e=l 

with 

fIL(s + (b + 1)/2 - i - 1, go x r)/L(s + (b + 1)/2 - i, ~0 x r) 
i=l 

is non-zero for Re(s) > 0. 

Proof. - Going back over the proof of Lemma 4.9, using Theorem 4.4, it follows that 
in fact L(s)-” divides L(>,aa x r)-‘. Set 

qs,ao x 7) = L(s,oo x r)/L(s)“. 

Then both 

fiB(s+(b+1)/2-i-l,~axr)/8(s+(b+1)/2-i,~0xr) 
i=l 

(Lemma 4.17) and 

n r]: L(s + (b + 1)/2 - i - V& - l)/L(s + (b + 1>/2 - i + &) 
e=i i=i 

(Proof of Lemma 4.19) are non-zero for Re(s) > 0 and their product is equal to the 
product in the statement of the lemma. 

Theorem 4.1 is now a consequence of Proposition 4.16, and Lemmas 4.17, 4.18, 4.19, 
and 4.20, applied to every regular chain or singular pair. 

REMARK 4.21. - Lemmas 4.1 and 4.6 of [34] have a similar proof which is a 
clever application of Casselman’s square integrability criterion [5]. It extends to other 
classical groups which are not discussed in [34] as well, when the lemmas are formulated 
appropriately. The only change is in the case of unitary groups which implies & E po,j. 
This is precisely what is needed for obtaining our results. 
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REMARK 4.22. - The regular chains and singular pairs defined here are the same as those 
defined by TadiC in [34] which is the same as in [5], and that is how we chose these 
terminologies. In fact our Proposition 4.16 proves some of the results of [34]. Observe that 
Proposition 4.16 is based on Theorem 4.4 which was proved in [23]. 

REMARK 4.23. - MuiC [42] now also has a proof of Theorem 4.1 when G = Spz, or 
SO zn+r. His proof, although quite different, also relies on the results of [23]. The paper 
contains some very interesting results for these groups. 

(See the introduction here.) 

5. Applications 

In this section we prove a result which determines the poles of intertwining operamrs in 
terms of those of L-functions whenever injectivity (Definition 3.1) holds in a certain level, 
We then apply this result to determine the poles of intertwining operators in terms of Artin 
L-functions in an important archimedean case (Theorem 6.1, Section 6). 

Let G be again a quasisplit connected reductive algebraic group over a local field F of 
characteristic zero as in Sections l-3. Fix a Bore1 subgroup B and write B = TU, where 
T is a maximal torus and U denotes the unipotent radical of B. 

Fix a F-parabolic subgroup P = MN with N c U and T c M, a Levi decomposition. 
Let Ao, I, ti, $M, a*, a& all be as in Section 1. Suppose 7r is an irreducible 
admissible $tM-generic representation of A4 = M(F). Let I(v, ‘rr), v E a& be as in 
Section 1. 

Assume P is maximal and let a be the unique simple root in N. As in [23], let 
i? = (p, a)-l . p, where p is half the sum of roots in N. Given s E C, sCr E a;. Let 
A(&, n, wo) be the standard intertwining operator from I(.&, r) into l(wo(scU), we(r)), 
where wa is a representative for Wo. 

As in Section 1, denote by LIM, the L-group of M and let ‘n be the Lie algebra of 

the L-group of N. Let T be the adjoint action of ‘M on ‘n and decompose r = 6 ri, 
i=l 

with ordering as in [23]. For each i, 1 5 i 5 m, let L(s, cr, ri) be the local L-function 
defined in [23]. (See Section 1 here.) It is defined to agree completely with Langlands 
definition of L-functions whenever there is a parametrization. In particular the L-function 
for arbitrary (T is just the analytic continuation of the one attached to the tempered inducing 
data through the product formula (cf. part 3 of Theorem 3.5 and equation 7.10 of [23]). 
(See also Theorem 5.2 of [26].) 

Next, embed 7r as a subrepresentation of a module 

where 0 is in the discrete series and v is in the closure of the negative Weyl chamber 
of a8 (Langlands classification). Here as is the real Lie algebra of the split component 
A0 of the center of MO. 

As usual fix s E 43. Embed I(s&, 7r) LS I(& + V, a), where s6 in I(sG + V, 0) denotes 
an extension of SQ to a;,,. Let W. denote the longest element in the Weyl group of A0 in 
G modulo that of Aa in M. Fix a reduced decomposition 60 = r&-r . . .& with respect 
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to the Levi subgroup Me of G (Lemma 2.1.1 of 1251). For each j, 2 < j 5 n - 1, 
there exists a unique simple root aj such that wj(aj) < 0. Let aj = Wjml . . . G1 with 
81 = 1. Let $ = 19, U {crj}, where 81 = 8 and t9,+l = Gj(ej), 1 < j 5 n - 1. The 
group Mo, contains Me, as the Levi subgroup of a maximal parabolic subgroup. For each 
j, uj = mj(gy) is an unramified twist of a discrete series of Moj. Let lnsl, (aj) denote the 
corresponding induced representation of Mei. Write Io, (gj) = I(v~, gi), where ai is in 
the discrete series. Up to an unramified twist 05 is unique. We will assume that for each 
j, c$ is such that every standard module of Moj which has 0:. as its tempered inducing 
data satisfies injectivity (Definition 3.1). 

THEOREM 5.1. - Suppose Conjecture 1.1 is valid whenever F is p-adic, e.g. G is classical. 
Moreover assume for each j every standard module of Maj which has 01 as its tempered 
inducing data satisJies injectivity (Dejinition 3.1). Then 

is entire. 

Proof. - The intertwining operator A(&, r, wa) is a restriction of the product of rank 
one operators A(vj, c(i) Sj), 1 5 j 2 n - 1. So are the L-functions L(s, ii, ri), of course 
under validity of Conjecture 1.1 if F is non-archimedean (Part 3 of Theorem 3.5 and 
equation (7.10) of [23], as well as Theorem 5.2 of [26]). One must therefore prove the 
following lemma. 

THEOREM 5.2. - Theorem 5.1 is valid if r is in the discrete series. 

Proof. - We need to show that if I(,&, rr) satisfies injectivity for all s E C, with 
Re(s) > 0, then the theorem is valid. 

If Re(s) > 0, then A(&, 7r, we) and fi L(’ zs, ii, ri) are both holomorphic. For s with 
i=l 

Re(s) = 0 which is a pole of A(&, 7r, wO), I( s&r) is irreducible by the theory of 
R-groups. Consequently the local coefficient C+(s& 7r) must have a zero of the same 

multiplicity (cf. equation (1.2) of [23] and Section 1 here). Since fi L(1 - is, n, ri) 
i=l 

is holomorphic for Re(s) = 0, the same is true about n L(is,ii, r;)-‘. It remains to 
i=l 

consider the case of Re(s) < 0. 
Suppose Re(s) > 0. Given f in an irreducible subspace of I(&& x), there exists a 1c, 

extending $‘M such that A$(&, r)(f) # 0 by injectivity assumption. Thus it follows from 

(5.1) X&Z, T) = C+(scY, T)X+(W~(SG), w0(r))A(s6, r, w,,) 

and equation (3.11) of Theorem 3.5 of [23] that C+(s&n)A(s&,~, we) must never be 
zero for Re(s) > 0. Using 

G&o(4, wo(~)Mwo(4, we(r), wo -1)C&6i, z-)A(&, 7r, wo) = I 

it is now clear that 

Cti(wo(s4, wo(~r))A(wo(s~), wo(~IT),wo -‘>> 
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is holomorphic for Re(s) > 0. This implies that 

fiL(1 - is,v;)/L(is,ii,ri). A(s+r,w,) 
i=l 

is holomorphic whenever Re(s) < 0, completing the lemma. 
With respect to reducibility of standard modules one has the following 

PROPOSITION 5.3. - Let F be any local jield. But in the case of p-adic F, assume that 
G satisjies Conjecture 1.1. Let P = MN be a maximal parabolic subgroup of G and 
fix a generic irreducible tempered representation o of M. Suppose Re(s) > 0. Assume 
Vogan’s theorem is valid for every I(sCr, o), i.e. if I(&, o) is generic, then I(sG, o) is 

irreducible. Then I(.&, u) is irreducible ifand only if fi L(l - is, o, r;)-’ # 0. When F is 
i=l 

archimedean, the L-junctions are those of Artin attached by Langlands and the assumption 
is already a theorem (Theorem 6.1 of [37]). 

Proof. - If 1(&S, cr) is reducible, then by our assumption (Vogan’s Theorem 6.1 of [37] 
if F is archimedean) its Langlands quotient is not generic. Consequently 

k&0(4, wo(a))A(G IT, wo) 

will be identically zero. But X+(&S, c) is not zero. Consequently 

C+(sG, (r, wa)-i = 0 which implies fi L(l - is, g, ri)-l = 0 (equations (3.11) and (7.4) 
i=l 

of [23]) since fi L(’ zs,g.,Fi)-’ is non-zero for Re(s) > 0. 
i=l 

Conversely suppose 1(&S, (T) is irreducible. Then X+(wa(sG), wO(o))A(sg, o, wg) is 

never zero and therefore fi L(1 - is, 0, ri)-’ # 0 since X+(sG, 0) is holomorphic. 
i=l 

More generally we have the following conditional reducibility criteria for representations 
induced from irreducible generic quasi-tempered representations. Applying standard 
arguments, such as inducing in stages for singular parameters, we may assume that 
their complex parameters are in the positive Weyl chamber. 

PROPOSITION 5.4. - Let F be any local jield. Suppose Vogan’s theorem is valid for the 
standard modules of G. Let P = MN be an arbitrary parabolic subgroup of G, P > B, 
and& an irreducible X-generic tempered representation of M. Let v E a: be in the positive 
Weyl chamber of the split component of M. Let C+(v, o) be the local coefJicient attached 
to v, u, and $. Then I(v, a) is irreducible if and only if C$ (v, a)-’ # 0. 

Proof. - Exactly as in proposition 5.3. 

6. An Important Archimedean Case 

In this section we will apply Theorem 5.1 to an important special case when F is 
archimedean. The case in hand has an important application in lifting of automorphic 
forms from classical groups to GL, as being pursued in [ 11,30,31], using the converse 
theorem [9]. 
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More precisely, let F = 54 or 43 and let G = SO zn, the split special orthogonal group of 
rank n. We will be concerned only with its Siegel parabolic subgroup P = MN for which 
M E GL,. Let c be an irreducible admissible generic representation of M = GL,(F). 

Let W, be the Weil group of F/F (cf. [ 1,17,18,24]) and fix a representation 

4: WF + LM = GL,(43) 

which parametrizes CJ as in [ 171. Given a representation r of LM = GL,(43), let L(s, r. 4) 
be the Artin L-function attached to the representation r. 4 of WF. (See [ 1, 18, 241.) Finally, 
note that the adjoint action of LM = G&(C) on Ln, the Lie algebra of the L-group of N, 
is equal to A2pn, the exterior square representation of GL,(Q3) (cf. [27]). We shall prove: 

THEOREM 6.1. - Let G = SOz,, ana! F = R or Cc. Assume P = MN is the Siegel 
parabolic subgroup of G. Let o be an irreducible admissible generic representation of M. 
Choose the homomorphism (representation) 

4: W, --+ GL,(43) 

parametrizing o. Let A(s&, u, WO) be the standard intertwining operator discussed before. 
Then as a function of s 

L(s, h2p, . &-lA(s&, o, wO) 

is entire, where 4 is the contragredient of qi 

Proof. - By Vogan’s results (Theorem 6.2.f of [37]) and the fact that R-groups for GL, 
are trivial, one concludes that (T is in fact a full induced representation, induced from 
a tensor product of essentially discrete series representations of a product ni GL,, (F). 
Since F = R or 43, m; = 1 or 2. 

Going back to Theorem 5.1, we only need to prove that the injectivity holds in each 
of the rank one cases. Then G is either GL,(R), m = 2,3,4, GLz(C), or finally 
split Sod(W). The Levi subgroups for m = 3 and 4 are GL2 x GL1 and GL2 x GL2, 
respectively, while that of SO4 is the Levi subgroup of the Siegel parabolic subgroup, 
i.e. M 2 GL2. The L-functions in [23] are now precisely those of Artin mentioned above 
(Theorem 3.5 of [23]). 

We shall now check the injectivity in each of the above cases. More precisely, we must 
show that in each case, every representation induced from an essentially discrete series 
data whose central character is in the positive Weyl chamber, i.e. a standard representation, 
contains no non-generic irreducible subspaces. 

When G = GL2 this is well known. Suppose G = S04(W). Realize the (topological) 
connected component of G as the quotient of SL2 (W) x SL2(R) by { f 1). The (topological) 
connected component of M = GLz(R) is the image of SL2(R) x R* with R* realized as 
the diagonal subgroup of the second SLz(W) in this product. The induction corresponds 
to a principal series in SLz(R). The injectivity is then a consequence of the same fact 
for SL2(R). 

It remains to consider GL, (R) wi th m = 3 or 4. The result must be contained somewhere 
in Speh’s thesis [32]. In fact m = 3 is clearly there. But, one expects it to be valid for any 
standard module of GL,(R) for arbitrary m, and this is in fact the case and a proof of it 
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was first communicated to us by Vogan. Here we include his unpublished proof of this fact 
in which any inaccuracy or shortfall is our responsibility and none his. We are indebted to 
him for providing us with a proof. Later, we realized, that there is also an analytic proof, 
based on the theory of canonical models [6, 401, due to Jacquet and Shalika [ 131. 

THEOREM 6.2 (Vogan, Jacquet-Shalika [13]). - Let I be a standard module of 
G = GL,(W). Then every non-zero irreducible subrepresentation of I is large, i.e. generic. 
In particular, I has a unique irreducible subrepresentation. 

Proof (Vogan). - Let g be the complexified Lie algebra of G. Let K be a maximal 
compact subgroup of G. We need Jantzen-Zuckerman translation functors $ and 4 on the 
category of (g, K)-modules of finite length. Then 

(6.2.1) Hom,,dU, $V> g Hom,,K(W, V) 

for any pair (U, V) of finite length (g, K)-modules, i.e. 4 is the adjoint of $. Similarly 
we have 

(6.2.2) Hom,,dU, $V) g Hom,,dW, V). 

(See $4.5 and $7.4 of [39].) Throughout the proof, we shall call (6.2.1) and (6.2.2), the 
adjointness property. The proof is in several steps. 

We first reduce to the regular infinitesimal characters. Let X be a standard module with 
a singular infinitesimal character. Let 2 be a standard module with a regular infinitesimal 
character such that X = r/1(2). F ix an irreducible subrepresentation W of X. Then by 
adjointness there is a non-zero (g, K)-map from 4(W) into 2. Assuming the theorem for 
2, this implies that 4(W) h as a large composition factor. But then W itself must be large 
since tensoring with a finite-dimensional representation does not change largeness. 

From now on we shall assume X to have a regular infinitesimal character which we 
shall fix throughout. Suppose that X = X(y) f or a regular character y of H, a o-stable 
Cartan subgroup of G with a o-stable Lie algebra b. Here 0 is a fixed Cartan involution 
fixing the Lie algebra of K. (See [39] for notation and terminology.) The proof will 
proceed by induction on the size of the A-parameter of the inducing data (with respect 
to the norm coming from the Killing form) of the standard module X (for our fixed 
regular infinitesimal character). Assume the size of A-parameter is not minimal. Then by 
Proposition 8.2.7 of [39] there is a standard representation Y with the same infinitesimal 
character as X and a translation to a complex root-wall functor $J with adjoint 4 such that 

0 + x + c#+(Y) --f Y --t 0. 

The standard representation Y then has a smaller size A-parameter. Now suppose W is 
an irreducible subrepresentation of X. Then it is one of @/I(Y). Applying adjointness 
to the non-zero map 

implies the existence of a non-zero map from &/I(W) into Y. Consequently &/I(W) 
contains as a subquotient an irreducible subrepresentation of Y which by induction is 
large. Again W must be large. 
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It remains to prove the theorem when the size of the A-parameter is minimal. Here we 
need to use Zuckerman derived functors and finally the fact that G = GL, (R). 

Now assume that the size of the A-parameter of X is minimal. Let q = I + u be the 
Q-stable parabolic subalgebra of g defined as follows. The subalgebra I is the Lie algebra 
of the levi subgroup L which centralizes the Lie algebra t of T = H fl K in G. The Car-tan 
subgroup H is then maximally split in L and the roots of h in I are exactly the real roots 
of h in 8. To define u, fix a generic element 2 of t, i.e. one that vanishes only on the real 
roots of h in 8. Let u be spanned by the root spaces of roots (Y such that 

or 

and a(Z) > 0, where 7 is the infinitesimal character of X(y). We need 

LEMMA 6.3. - Suppose the A-parameter of X(y) is minimal. Let 7 be the injinitesimal 
character of X(y). Then: 

(6.3) Every non-real positive integral root CLI for 7 is a root in u. 

Proof. - Suppose 

(7; a”) = m 

is a positive integer for some non-real root a, where 

a!” = 2a/(a, a) 

is the corresponding coroot and ( , ) is the Killing form. By definition (7, o”) = 
(7, a”) = m. If (ecr,?) 2 0, then 

2(Cx, $71 t> = (cl! + ocr, “i) > 0 

and thus CI: is in u. Assume (&r,r) = (Qo, y) < 0. After changing the roles of Q! and 
Ba, if necessary, we may assume 

(6.3.1) (y, -19a”) 2 m. 

The parameter y’ = y - ma! is a regular character with the same infinitesimal character 
as y. Moreover, the (squared) length of the corresponding A-parameter is one fourth of 

117’ - Oy’112 = 11-y - 0-f - m(cx - Oa)112. 

By two-dimensional geometry 

IIY’ - @/II < IIY - hll 

if and only if 

(6.3.2) 2(y - 197, a - 19~2) > mJla - 6bl12, 

which we shall now prove, getting a contradiction to minimality of I( y - &yjI. 
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The left hand side of (6.3.2) is equal to 

(6.3.3) 4(Y, a) - 4(-Y, 64 L 2m(Q, 4 + W% 4 
= 4m(a, a!), 

using (6.3.1). Now the right hand side of (6.3.3) can be written as 

4mJ11/2(a + Bcu)\~~ + 4m111/2(cr - Ba)112 > mlla - 19~~11~ 

since a is not real, proving (6.3.2) and completing the lemma. 

Let yq be, for example, as in Lemma 8.1.2 of [39], and let XL = X,(yg), the standard 
representation of L, defined by yq. Then by Zuckerman’s cohomological induction (cf. [39]), 
X = RSXL, where RS is the appropriate exact cohomological functor of Zuckerman 
(Lemma 6.3 here, Definition 6.5.1, Corollary 8.1.15, and Situation 9.3.8 of [39], and 
Proposition 4.11 of [38]). 

By Theorem 6.2.e of [37] all the irreducible subspaces of XL = X,(y4) which is a 
minimal principal series (roots of h in I are real roots of lj in g and H is split in L) are large. 

It remains to show that for G = GL, (W), the functor RS preserves largeness. 

Let G be a quasisplit real (linear) group and let 7r be an irreducible admissible 
representation of G. Then rr is given as the Langlands quotient x(r) of a standard 
module X(y), where y is a character of a O-stable Cartan subgroup H whose complexified 
Lie algebra is h. Let R(y) be the set of integral roots of h in g with respect to 7, the 
infinitesimal character of X(y) which we may assume to be regular. Let R+(T) be the set 
of positive roots in R(r). By [37], QT is large if (cf. Definition 8.6.5 and Theorem 8.6.6 
of [39] and Theorem 6.2.f of [37]): 

1) If a E R+(T) is a simple non-real root, then 19a E R+(r). 
2) If Q! E R+(T) is a simple real root, then a! fails to satisfy the parity condition 

defined in Definition 8.3.11 of [39]. 
3) If o E R+(r) is a simple imaginary root, then Q: is non-compact. 

Suppose now that Y is an irreducible subrepresentation of X = RSXL. By Lemma 6.3, 
RS restricted to the infinitesimal character y4 is exact and carries irreducible representations 
to irreducible representations. Therefore there is an irreducible subrepresentation YL of XL 
with Y = RSY~. As we discussed above (Theorem 6.2.e of [37]), YL is large. Write 
YL = x~(yi). Since YL has infinitesimal character =&, the corresponding regular character 
y’ for G satisfies (6.3) as y and Y = x(7’). We need to check the conditions l)-3) for 
Y to be large. Because of (6.3), R+(T’) = R+(;‘J~) U R$(?‘), where R;t(y’) is the set of 
integral roots in u with respect to 7’. Clearly R,f(?‘) contains no real roots (u is O-stable) 
and is &stable. But simple roots of R+(?‘), are then those of R+(yi) plus a subset of 
R,f (7’). It is therefore clear that conditions (1) and (2) above for Y is inherited from YL. 
In the case of G&(R), every imaginary root is non-compact and therefore condition 3) 
is empty. The theorem is now complete. 
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